Active phase and amplitude fluctuations of flagellar beating.

نویسندگان

  • Rui Ma
  • Gary S Klindt
  • Ingmar H Riedel-Kruse
  • Frank Jülicher
  • Benjamin M Friedrich
چکیده

The eukaryotic flagellum beats periodically, driven by the oscillatory dynamics of molecular motors, to propel cells and pump fluids. Small but perceivable fluctuations in the beat of individual flagella have physiological implications for synchronization in collections of flagella as well as for hydrodynamic interactions between flagellated swimmers. Here, we characterize phase and amplitude fluctuations of flagellar bending waves using shape mode analysis and limit-cycle reconstruction. We report a quality factor of flagellar oscillations Q = 38.0 ± 16.7 (mean ± s.e.). Our analysis shows that flagellar fluctuations are dominantly of active origin. Using a minimal model of collective motor oscillations, we demonstrate how the stochastic dynamics of individual motors can give rise to active small-number fluctuations in motor-cytoskeleton systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active phase and amplitude fluctuations of flagellar beating (accepted for publication in Physical Review Letters)

The eukaryotic flagellum beats periodically, driven by the oscillatory dynamics of molecular motors, to propel cells and pump fluids. Small, but perceivable fluctuations in the beat of individual flagella have physiological implications for synchronization in collections of flagella as well as for hydrodynamic interactions between flagellated swimmers. Here, we characterize phase and amplitude ...

متن کامل

Noise and synchronization in pairs of beating eukaryotic flagella.

It has long been conjectured that hydrodynamic interactions between beating eukaryotic flagella underlie their ubiquitous forms of synchronization; yet there has been no experimental test of this connection. The biflagellate alga Chlamydomonas is a simple model for such studies, as its two flagella are representative of those most commonly found in eukaryotes. Using micromanipulation and high-s...

متن کامل

Rhythmicity, recurrence, and recovery of flagellar beating.

The eukaryotic flagellum beats with apparently unfailing periodicity, yet responds rapidly to stimuli. Like the human heartbeat, flagellar oscillations are now known to be noisy. Using the alga C. reinhardtii, we explore three aspects of nonuniform flagellar beating. We report the existence of rhythmicity, waveform noise peaking at transitions between power and recovery strokes, and fluctuation...

متن کامل

Hyperactivation is the mode conversion from constant-curvature beating to constant-frequency beating under a constant rate of microtubule sliding.

Flagellar beating of hyperactivated golden hamster spermatozoa was analyzed in detail using digital image analysis and was compared to that of nonhyperactivated (activated) spermatozoa in order to understand the change in flagellar beating during hyperactivation and the active microtubule sliding that brought about the change in flagellar beating. Hyperactivated flagellar beating, which was cha...

متن کامل

O-11: Dynamics of Flagellar Force Generated by A Hyperactivated Spermatozoon

Background: To clarify the mechanism of sperm penetration through the zona pellucida, the flagellar force generated by a hyperactivated spermatozoon was evaluated using the resistive force theory applied to the hyperactivated flagellar waves that were obtained from the mammalian spermatozoa. Materials and Methods: The hydrodynamic calculation of the flagellar force of the activated (non-hyperac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 113 4  شماره 

صفحات  -

تاریخ انتشار 2014